

 November 30 – December 3, 2004 ◊ Las Vegas, Nevada

 Advanced AutoLISP® Tricks for CAD Managers
 Robert Green, Robert Green Consulting Group

CM22-1L You already know that AutoLISP is a powerful programming language that can make AutoCAD® do great
things. The question is, “How can I use this language to make my life as a CAD manager easier?” This
session concentrates on straightforward AutoLISP routines combined with Visual LISP® reactors that can
solve common CAD management problems like machine configuration, directory management, paper and
model space configuration, and standards enforcement. Beginning LISPers will find this class to be an eye-
opening experience, while experienced LISPers will find the reactor routines valuable for customizing their
work environments. If you are curious about AutoLISP and haven't explored using reactors this lab is for you.

Who Should Attend
Technical CAD managers and power users who want to extend AutoCAD capabilities using LISP

Topics Covered
* How to load all required programs automatically
* How to control multiple machines from a central location
* How to use Visual LISP reactors to write smarter programs
* How to enforce standards using the AutoLISP Startup function
* How to manipulate attribute data using AutoLISP

About the Speaker:

Robert is a nationally known author and consultant with 19 years of experience in MCAD. He heads the
Robert Green Consulting Group and is a 10-year veteran speaker at AU. You've likely read his work in
CADalyst magazine or in his bi-monthly CAD Manager's newsletter. In addition to writing, Robert provides
various consulting and teaching services for clients throughout the U.S. and Canada. Robert holds a degree
in Mechanical Engineering from the Georgia Institute of Technology.

 Email: rgreen@greenconsulting.com

Advanced AutoLISP® Tricks for CAD Managers

2

My Philosophy Regarding AutoLISP

AutoLISP is a very powerful language that can take years to learn and master. I’ve been working with it since
1990 and I still learn new things about AutoLISP on every project. Having said this I’d like to say that there is a lot
you can do with AutoLISP without having to be a programming jock if you approach things with a cookbook style
approach and use existing routines.

Of particular importance to me, given my CAD manager emphasis, is the ability to really standardize the way
AutoCAD behaves, load external commands and centralize all of this from a standardized network location.

I realize there is a wide range of AutoLISP skills in this class so I’ve tried to build our examples starting with more
simple concepts and ratchet the complexity of the code up as we move along.

For This Lab

Since we can’t completely shred the setup of these lab machines we’ve installed a folder onto the desktop of your
machine that contains all the files you’ll need for this lab. There is also an AutoCAD startup icon in the folder that
will start AutoCAD in such a way that it will automatically load the key files we’ll need to work with.

Please keep all the files you work with in the folder we’ve provided so we don’t mess up the lab machines. I thank
you and so will the people who use the lab later.

Key Files and Variables
The first thing to understand is that AutoLISP has a couple of key files and a key function that perform startup
operations for you. The key files are called ACAD.LSP and ACADDOC.LSP and the key function is called
S::STARTUP and their operations are as summarized here:

ACAD.LSP This file loads when AutoCAD starts up. Any programming you place within this file will
be automatically loaded every time AutoCAD starts. The ACAD.LSP file is normally
located in the SUPPORT subdirectory of the AutoCAD installation. ACAD.LSP does not
exist by default … you need to make it.

 Variable Notes: Loads with each drawing session for AutoCAD 2xxx versions
ONLY IF the ACADLSPASDOC is set to 1.

ACADDOC.LSP This file loads every time a new drawing session is started in AutoCAD 2xxxbased
products. Therefore any programming you place in this file will be loaded automatically
every time a drawing is opened or started no matter how the ACADLSPASDOC variable
is set. Like the ACAD.LSP file, ACADDOC.LSP is normally located in the SUPPORT
subdirectory of the AutoCAD installation.

Version Notes: Only supported in AutoCAD 2xxx versions.

MENUNAME.MNL This file loads whenever its menu counterpart (either an MNU or MNC file) is loaded into
AutoCAD. By placing AutoLISP code in this file you can be assured that the code will be
loaded into memory ONLY when the parent menu is in use. Note that the code is only
loaded once (like the ACAD.LSP) rather than with each drawing session (like the
ACADDOC.LSP file). Plan accordingly.

Advanced AutoLISP® Tricks for CAD Managers

 3

Key Functions
The first thing to understand is that AutoLISP has a couple of key files and a key function that perform startup
operations for you. The key files are called ACAD.LSP and ACADDOC.LSP and the key function is called
S::STARTUP and their operations are as summarized here:

S::STARTUP function This function is typically defined in the ACADDOC.LSP file (or ACAD.LSP file for
AutoCAD R14 installations) and its sole job is to execute customized commands
you need to initialize your new drawing environment. This function is the perfect
place to set system variables like DIMSCALE, VIEWRES parameters, current
layers, etc. The most powerful aspect of the S::STARTUP function is that it
invokes automatically and it lets you control exactly how the AutoCAD
environment is initialized.

Reactors These embedded “reactor” like functions were added when Visual Lisp
was bound into AutoCAD 2000. Working with these functions allows
HUGE advances in what AutoLISP can do with only minimal overhead.
These functions must be invoked (typically from the ACAD.LSP file) by
loading the VL-LOAD-COM reactors. We’ll examine reactors in much more
detail a bit later.

Basic ACADDOC.LSP
First let’s set some key variables so that each drawing session will get the same basic setup. Just open a text
editing program and enter in the following (note the use of ; characters for insertion of comments):

 (command “viewers” “y” “5000”) ; sets view resolution for no jaggy circles
 (command “-color” “BYLAYER”) ; set color to BYLAYER
 (command “-linetype” “set” “BYLAYER” “”) ; set color to BYLAYER
 (command “menu” “menuname.mnc”) ; load standard menu file at startup
 (prompt “\nACADDOC.LSP loaded … “) ; send a diagnostic prompt to the command line

Now save this file into your SUPPORT folder with the name ACADDOC.LSP and restart AutoCAD to see if it
worked. If everything loaded fine you’ll see the prompt appear in your command line window. If not the file was
most likely not saved in the correct path.

Extra: Make a mistake in the file on purpose like this:

 (command “-colllor” “BYLAYER”) ; color is purposely misspelled

Now save the file and restart AutoCAD. What happens at the command line?

Conclusion: Obviously you could do much more but even these simple ideas allow you to gain a lot of
control with minimal AutoLISP knowledge.

Advanced AutoLISP® Tricks for CAD Managers

4

Network Support
What if we wanted to store our AutoLISP routines in a single network location so that EVERYBODY had the same
AutoLISP files? This approach would allow us to only maintain a single repository of AutoLISP routines and
would mean that keeping all machines in sync would only require a single maintenance activity on our part;
updating only a single AutoLISP file on the network. I’ve used this network support approach with many clients
and it has not only worked but it has allowed me to keep machines on wide area networks standardized without
having to travel or run my feet to a nub in campus style environments.

Here’s the basic idea of how to gain control:

• Seed the user’s machine with an ACAD.LSP and/or ACADDOC.LSP file in their support directory that will
point to an external network location using a variable.

• Execute all load instructions from the ACAD.LSP and/or ACADDOC.LSP using the variable location.

• Test for the presence of all files you’ll load using the variable location prior to loading to assure that errors

are avoided.

Example ACAD.LSP
In this case we wish to load some external AutoLISP files (called UTILS1.LSP and UTILS2.LSP) we’ve written to
add commands to AutoCAD’s vocabulary. The case where commands are being added suggests using
ACAD.LSP because the commands need only be loaded once, when AutoCAD starts up. Further, we’d like to
load these files from a network drive and path that I’ll call X:\AUTOLISP as an example.

The contents of the ADAD.LSP would look like this:

(setq lisp_path “X:\\AUTOLISP\\”) ; sets the path

(if (findfile (strcat lisp_path "utils1.lsp"))
 (load (strcat lisp_path "utils1.lsp"))
)

(if (findfile (strcat lisp_path "utils2.lsp"))
 (load (strcat lisp_path "utils2.lsp"))
)

Notice that the LISP_PATH variable is set first because the following statements make use of the variable to
locate the files UTILS1.LSP and UTILS2.LSP in the network drive.

This approach gives us the benefits of loading files from a remote location, as opposed to putting all the code in
the ACAD.LSP itself, thus we can maintain the remote files separately!

On the down side though, we still have to maintain the ACAD.LSP file on each machine as we include more
AutoLISP files for loading. We need a way to get around this problem.

Advanced AutoLISP® Tricks for CAD Managers

 5

Example ACAD.LSP (con’t)
In this case we load in a single remote file from the network location that loads all external functions for us. The
new file I’ll reference is called INIT.LSP because I use it to INITIALIZE all my file load statements.

The contents of the ADAD.LSP would look like this:

(setq lisp_path “X:\\AUTOLISP\\”) ; sets the path

(if (findfile (strcat lisp_path "init.lsp"))
 (load (strcat lisp_path "init.lsp"))
)

In the X:\AUTOLISP\ folder we’ll now have a file called INIT.LSP that looks like this:

(if (findfile (strcat lisp_path "utils1.lsp"))
 (load (strcat lisp_path "utils1.lsp"))
)

(if (findfile (strcat lisp_path "utils2.lsp"))
 (load (strcat lisp_path "utils2.lsp"))
)

Now we have complete control because the only thing our ACAD.LSP file does it set a network location to “look
to” and a single initializing file. Now I can make any changes I want in the INIT.LSP file and I’ll never have to go
to the local machine again unless I need to change the value of the LISP_PATH variable!

This is the way it should be, zero maintenance at the remote machine, total control from the network support path.

Bonus: Note that by setting a variable for the network location in memory that we DO NOT have to make
any pathing adjustments in the AutoCAD profile! Again, zero maintenance at the local machine.

USER.LSP Architecture

I’ve found that many companies have power users who have a collection of their own favorite AutoLISP files. The
problem becomes one of balancing the need to standardize the way AutoCAD operates without crippling the
power users that can do their own AutoLISP work. The solution? Implement an automatic routine that allows
users to create their own USER.LSP file that will load in all their AutoLISP code without stepping on the
ACAD.LSP or ACADDOC.LSP files you’ll use to standardize the installation.

A sample code segment for loading the USER.LSP looks like this:

 (if (findfile "user.lsp")
 (load "user.lsp")
)

The only trick here is that the power user must name his/her file USER.LSP and the file must be located in a path
that AutoCAD can find (typically the SUPPORT folder) on the local machine (remember the user is local).

Advanced AutoLISP® Tricks for CAD Managers

6

USER.MNU/MNC Architecture
Want to load a user specified menu file? Simple! Use this code segment:

 (if (findfile "user.mnc")
 (command “menu” "user.mnc")
)

Again, the only requirements are the file name and path as in the USER.LSP case.

The Profile (ARG) to REG File Trick
OK, this isn’t really an AutoLISP trick but it is none the less a great trick for the working CAD managemer.
Basically the trick is to realize that a profile ARG file created by AutoCAD is the same thing as REG file. If you
watch your step and edit carefully you can make a library of standard profiles that can be invoked from a
command prompt or from Windows’ RUN line rather than having to import the profile using AutoCAD’s OPTION
command.

Here’s the procedure:

1. Get AutoCAD setup exactly the way you’d like your users to have their system setup.

Note: For AutoCAD 2004 users be sure to note that many of the file parameter settings stored in the
profile will be stored to the Documents and Settings directory for the current user. You may want to strip
the support for these directories out of the profiles so the settings will be completely portable to other
users!

2. From the OPTIONS command use the PROFILE tab to EXPORT a profile (ARG file).

3. Store the profile in your R drive with the name CLASS EXAMPLE (note the ARG file extension)

4. Using Window's File Explorer look in your R drive and find the CLASS EXAMPLE profile and right click

the file to OPEN it.

5. Note how similar this looks to a REG (registry) file?

6. Rename your profile to have a REG file extension rather than ARG

7. Double click your new REG file, what happens?

8. So, yes, AutoCAD profiles are really registry files. This means you can put them in the startup group on
the user's computer and guarantee that their machine will start right every time! Be aware that fouling up
the registry can cause unintended consequences so be sure to back everything up and test your work
thoroughly before running it on production machines.

Advanced AutoLISP® Tricks for CAD Managers

 7

Multi Keystroke Shortcuts
You’ve probably all dabbled with setting up keystroke shortcuts for AutoCAD commands either by editing the
ACAD.PGP file directly or by using the Tools -> Customize menu in AutoCAD’s interface. This customization
methodology allows you to trigger a command using a single keystroke like this:

F triggers the FILLET command.

The problem with this approach is that the FILLET command will always use the last setting for the FILLETRAD
variable. What if I want to trigger a zero radius fillet? Let’s use an AutoLISP function like this:

(defun c:fz () ; Define an FZ command
 (setvar “filletrad” 0.0) ; Set the fillet radius
 (command “fillet” pause pause) ; Invoke FILLET and wait for two user inputs
 (princ) ; Clear the command line
)

Make it even better like this:

(defun c:fz ()
 (setq old_filletrad (getvar “filletrad”)) ; Store the old fillet radius value in a variable
 (setvar “filletrad” 0.0)
 (command “fillet” pause pause)
 (setvar “filletrad” old_filletrad) ; Put the fillet radius back the way you found it
 (princ)
)

This example illustrates that simple AutoLISP routines can automate multikeystroke functions with ease!

ZOOM ALL

Here’s another favorite of mine, the ZA function that peforms a zoom to extents and then zooms out by a factor of
0.95 to create a slight margin around the outside of engineering title blocks:

(defun c:za ()
 (command “zoom” “e” “zoom” “0.95x“)
 (princ)
)

AUTO PURGE

Here’s a function that does an autopurge and save by keying in ATP:

 (defun c:atp ()
 (command “-purge” “a” “*” “n” “qsave”)
 (princ)
)

Note: If you’re unsure how to build a function just go to AutoCAD and type in your commands taking
careful notes of what you typed. Then just use the syntax I’ve given here and subsitiute your values in.
Just watch the typos and you’ll be writing cool functions very quickly.

Advanced AutoLISP® Tricks for CAD Managers

8

ATTRIBUTE MANIPULATION

AutoLISP manipulation of attributes within blocks isn’t pretty. It took me hours and hours to come up with some
useful routines that I like to call GETTAG and CHGTAG. I’ve included compiled versions of these routines that
you may feel free to use in your own programs.

The functions are called like this:

(GETTAG “BLOCK” “ATTRIBUTE”)

(CHGTAG “BLOCK” “ATTRIBUTE” “NEWVALUE”)

So if you had a block called TRANSFORMER that had an attribute called VOLTAGE in it you could retrieve the
value of the voltage like this:

(GETTAG “TRANSFORMER” “VOLTAGE”)

Now if you wanted to replace the voltage with a value of “240V” you could do so like this:

(CHGTAG “TRANSFORMER” “VOLTAGE” “240V”)

These routines won’t replace BATTMAN or any of a number of excellent user tools available in AutoCAD or on
the aftermarket, but for manipulating attributes from within AutoLISP programs I’ve found them to be the best
utilities available (even if I did custom tweak them myself).

Advanced AutoLISP® Tricks for CAD Managers

 9

Basic Reactor Concepts
Reactors are a very sophisticated (yet not too complex) way to get some great results from AutoLISP. The
following code segment illustrates a problem I solved for a client who wanted their DIMSCALE, LTSCALE and
TEXTSIZE parameters to switch as they moved between model space and paper space layouts. In order to set
these parameters “on the fly” I utilized reactors to detect when layout tabs were switched and then employed
some basic programming to set the variables accordingly based on storing the drawing’s DIMSCALE in the
USERR1 variable register. This may sound complicated right now but we’ll walk though each code segment so
you can see this powerful example clearly.

(vl-load-com)

(defun DoThisAfterLayoutSwitch (Caller CmdSet)
 (prompt (strcat "\nLayout tab switched to: " (getvar "ctab")))

 (if (= (getvar "userr1") 0.0)
 (setvar "userr1" (getvar "dimscale"))
)

 (if (= (getvar "ctab") "Model")
 (progn
 (setvar "textsize" (* (getvar "dimtxt") (getvar "userr1")))
 (setvar "dimscale" (getvar "userr1"))
 (setvar "ltscale" (* 0.375 (getvar "userr1")))
)
 (progn
 (setvar "textsize" (getvar "dimtxt"))
 (setvar "dimscale" 1)
 (setvar "ltscale" 0.375)
)
)
 (princ)
)

(setq MyReactor1
 (vlr-miscellaneous-reactor
 nil
 '((:vlr-layoutSwitched . DoThisAfterLayoutSwitch)
)
)
)

(defun Clear_My_Reactors ()
 (if (and MyReactor1 (vlr-added-p MyReactor1))
 (vlr-remove MyReactor1)
)
)

(defun Clear_All_Reactors (/ TMP)
 (vlr-remove-all :vlr-dwg-reactor)
)

Advanced AutoLISP® Tricks for CAD Managers

10

More Info on Reactors
Using the AutoCAD Developer help you can search on REACTORS and find a wealth of information about the
various VLR functions in AutoLISP that allow access to reactors. If you take some time to experiment with the
additional reactors AutoCAD offers you can do a lot more than simply detect layout tab switches.

I don’t have time in this class to cover all the possibilities but I will say that the following reactors have served me
well in client work I’ve performed:

Of particular interest are the following:

 VLR-SYSVAR-REACTOR For detecting changes to SYSVAR (DIMVAR) settings

 VLR-XREF-REACTOR For detecting changes to XREF attachments

 VLR-DWG-REACTOR For detecting file operations like OPEN, SAVE, etc.

Downloads Available

I’ve found CAD Depot to be a very useful source for public domain AutoLISP utilities you can use as inspiration
for your own routines. You can find the AutoLISP area at:

http://www.caddepot.com/dcd1/Autodesk/AutoLiSP/

Besides AutoLISP routines there’s a lot of other nice material at CAD Depot worth some of your browsing time.

Want the PowerPoint?
I’ll be happy to send you a copy of the session PowerPoint presentation and/or data files. Just send an email to
me at rgreen@greenconsulting.com and be sure to put CM22 - PowerPoint in the subject line so I’ll know which
class you attended.

I’ll begin sending out PowerPoint files on December 6th upon my return to Atlanta.

Reference Materials
You can find a wide range of information on CAD management at my WWW.CAD-MANAGER.COM web site.
Just check under my CADALYST MAGAZINE link for all of my published articles and newsletters.

Happy reading!

