
Building Stronger Families
David Conant – Revit Product Designer
Steve Stafford - WATG

Adding your own custom data to families
Effective use of formulas
Conditionals in formulas
Controlling nested families

BD 35-3

Building Stronger Families

Family Planning
• Good planning strategies

• Complexity
• Typology
• Constraints

• Test for Success

Learning to Share
• Creating Shared Parameters
• Effective Use of Sharing

Remember Your Math
• Formulas in families
• Syntax and Methods
• Examples

Decision Making
• Conditional Statements in Families
• Syntax and methods
• Limitations
• Examples

Good References
• Using Reference Lines to control

component orientation
Controlling the Nest

• Using Family Type parameters
• Scheduling nested family types

Agenda

Family Planning

Pre-construction planning makes for better
and more easily constructed families

• How will the family be used?
• What views?
• Levels of Detail
• Proper Category
• Is interactive resize required?

• Understand the typology
• Unique type for each variation
• Many variants within one type
• Mix

• Determine the parameter scheme
• What are the realistic variations
• What values will need to appear on schedules
• What values will need to appear in exports

Build For Speed

Use the simplest representation
possible or you will pay a price in
perfomance

• If it can’t be seen don’t build it
• If you don’t need to show it as a solid

in a 3d view, build it as 2d elements
only.

• Avoid modeling tiny things.
• If 3d detail can’t be seen in a typical

view, simplify it.
• If detail is important in some views,

assign level of detail visibility to
elements to hide them when not
needed.

VS

Put Your Family on its Best Behavior

Constraints and Parameters add Control
but…

• Don’t go overboard
• Excessive constraint usage hurts

performance, and makes families harder
for others to understand.

• Too many parameters make variation
more difficult

• Instance Parameters allow variation within a
type, but…

• Should only be used when an element is
truly freely resizable in the real world

• Each variation of size creates a unique
symbol. This decreases performance

• Shared Parameters expand access to your data,
but…

• Parameters from different shared
parameter files will always be different
even if they have the same name.

Type

Instance

Put Your Family on its Best Behavior

Standardized Testing Ensures Quality
• Flex the skeleton before adding geometry

• Fixing a bad skeleton is far easier than
rebuilding geometry

• Flex repeatedly during construction
• Discover problems while they are still

small
• Flex host thickness to see if all elements

behave.
• Be unreasonable to find the limits

• Never expect users to behave
reasonably

• Always test at least 2x the largest and
.5x the smallest reasonable values

• Test visibility of all elements
• Load into a project and try to make all types

Learning to Share: Align your Data

Shared Parameters align data
across families and projects
• Shared parameters can appear on all

schedules
• Shared Parameters allow elements of

different categories to appear in the
same schedule

• Shared parameters can be tagged
• Shared Parameters export to ODBC

Learning to Share: Maintaining Discipline

With power comes the potential for
confusion
Create a single shared parameter file
for all users to access

• Shared parameters get a unique ID on
creation

• Parameters with the same name created in
different shared parameter files have
different ID’s and will not merge

• Duplicate parameters create duplicate
schedule entries

• If duplication occurs, use Modify in family
properties to re-associate all duplicates to
one original

Param File 1

Custom 1

Param File 2

Custom 1

Schedule

Custom 1 Custom 1

Schedule

Custom 1 Custom 1

Learning to Share: Creating Shared Parameters

Define and Modify:
• Select a Shared Parameter File

• Best Practice: Use only 1 shared
parameter file for your firm

• Select or Create a Parameter
Group
• Organize parameters into logical

groups
• Create a new Parameter

• Name
• Discipline

– Use “Common”
• Type

• Warning: Once created, shared
parameters cannot be modified or
renamed.

Learning to Share: Applying Shared Parameters
As Family Parameters

Use where values are known in advance.
• In Family Properties select Add
• Select “Shared Parameter” from

Parameter Properties
As Project Parameters

Add shared parameters to all elements of a
category in a project.

• Usage:
•System families
•Sheets and views
•Where parameter value is
unknown in advance.

• Available from Settings|Project
Parameters

• Assign to desired categories

The Power of Formulas

Why? I hate math.
• Create parameters that depend on

other parameters
• Embed fixed relationships more

complex than simple constraints
such as equality allow

• Express parameters in terms the
user understands while driving
more complex criteria

• Simplify user interaction with
family parameters

The Power of Formulas

Data Types
• Formulas can create real

numbers, integers, lengths,
areas, volumes, or angles

• Multiply or divide by a single unit
to convert between lengths,
areas, reals, or integers.

One way and two way
formulas

• If a parameter depends on only
one other, changing either will
change the other

• If a parameter a function of
more than one other parameter,
it will be completely dependent.

Remember Your Math?

How?
• Enter a mathematical formula in the

Formula Column of the Family Types
dialog.

Operators
• +, -, /, *, sqrt, log, x^y, sin, cos, tan,

atan, asin, acos, exp, abs

Format
• Use normal mathematical syntax
• Parameter names are case sensitive

Length = Height + Width + sqrt(Height*Width)
ArrayNum = Length/Spacing

Instance Parameters in Formulas

• Instance parameters can be
driven by either type or
instance parameters

• Instance parameters cannot
drive type parameters

• An instance parameter that
depends on another
instance parameter is a one
way parameter. It will
update with each change in
its driver

New in 7.0
• Beam length from 2 pick

beams can be used in
formulas

Examples

Examples
• Arrays

• Angles

Formulas: Examples from Practice

Decision Making: Conditional Formulas

Add logic to family behavior
• Define actions in a family that

depend on the state of other
parameters

Why Bother?
• Non-Linear size variation

• IF this beam is longer than 20’
make the depth 16”, otherwise
make it 12”.

• Conditional Visibility
• Is a statement True? If so,

make an element invisible.
• Limit Array Values

• If the Array number is less
than 2 reset it to 2

Decision Making: Conditional Formulas

Logic and Scope
• Conditional formulas are based on

evaluation of a statement for truth
• Only mathematical statements or YES/NO

parameters can be tested.
• Only mathematical statements or YES/NO

parameters can be driven
• Conditions in nested elements are hidden

in the host

Functions and Tests
• Equal: =
• Less Than: <
• Greater Than: >
• IF
• NOT
• AND
• OR
• <= and >= can be written as

NOT(a > b).

Decision Making: Conditional Formulas

Syntax
• IF

• =IF (Test Condition, Result if True,
Result if False)

IF (Length < 35' , 2'-6", 3'-0")
• NOT

• Inverts tests
• For simple inversion of YES/NO

parameters, no IF is required

IF (NOT (A > B) , 8 , 3)
• AND, OR

• Test multiple conditions
IF (AND (x = 1 , y = 2), 8 , 3)

• Nesting
• Alternatives if first test is false
IF (Length < 35' , 2' 6" , IF (Length

< 45' , 3' , IF (Length < 55' , 5' ,
8'))

Good References: Reference Lines

New in 7.0
Control position and
orientation without nesting
Create self contained
reference systems
Move many elements with a
single control
Define movement linkages
between elements

Good References: Using Reference Lines

Create
• Select a work plane for the Ref. Line

• Movement and rotation will occur in
this plane

• Work plane can be from another
Ref. Line

• Use Reference Line tool
• Draw like ordinary model lines (straight

lines only)
• Can be dimensioned and constrained

Using Ref. Lines for Work Planes
• Use Plane tool on Options Bar
• Select “Pick a Plane”
• TAB when over the Ref. Line to switch

between the 2 possible planes.

The Nesting Instinct

Build families from
subcomponents

• Assemble Model elements
• Reliable control of complex parts
• Memory savings
• Reuse your work

• Swap subcomponents parametrically
• Add Annotation elements

• Put text in model families
• Create families that appear as

model elements in some views
and annotation elements in
others

Controlling the Nest

Move nested families parametrically
• Align and lock to other elements
• Use labeled dimensions directly

Drive properties with parameters of
host family

• Create driving parameters in host
FIRST

• In nested family’s properties, select =
button and select from host family’s
parameters

• Valid for type or instance parameters
Control visibility of instances as a
whole

• By view
• By level of detail

Controlling the Nest: Family Type Parameters

New in 7.0
Create Families with interchangeable
parts

• Parametric control of the family and type of
nested family instances

• Swap any nested family instance with an
instance of any other Family/Type in the
same category

• Show the nested Family and Type in
schedules

• Control on either a Type or Instance basis

Using Family Type Parameters

Creating the Parameter First
When you are building a template family

• In the family types dialog create a new
parameter of type <family type>

• Select the category to control
• Load a family and place an instance

Create the Parameter After
Placing Instances

Lets you decide later
• Select a nested family instance
• On the Options Bar, select Label/<add

parameter>
• Enter a name for the parameter.

Show on Schedules
• Use a shared parameter

Leverage Level of Detail

Get more drawing information
out of your families

• Change from diagrammatic to
specific representations

• Add elements at increased levels
of detail

• Prebuild graphics required for
detailing

Increase performance
• Reduce visual complexity in coarse

views to make work faster
• Simplify 3d elements to save on

view generation time
• Speed detail generation

New Features in 7.0

Family Type parameters
Reference Lines
Use Length instance parameters in
formulas
RPC 3 Cars and Office Clutter
available

Questions?

Thank you for your participation
Power Point and Handout will be available for
download
Please fill out the survey.

Shorten the Family Tree

Use Type Catalogs when there are
many predefined types

• Shortens the Project Browser tree: only
explicitly loaded types appear

• When loading families, the filter function
of type catalogs gets users to the
desired type faster

• Manage types in an external editing
environment without opening each type
in Revit, or even opening Revit

Drawbacks
• A catalog file must be maintained for

each family

Making Arrays Work for You

Control arrays parametrically
• Select array and then the dimension,

add a label
• Choose Drag to end while creating

array to control overall length
• Choose Drag to 2nd to control spacing
• Select Append to End to have an end

dimensioned array grow past the
dimensioned element as number
increases

• To control the size of array elements
use nested families and drive
parameters from the host

• Control array number as a function of
an instance parameter. As length is
dragged out, add more elements

